Ring-Chain Tautomerism. Part V. ${ }^{1}$ 8-Aroyl- and 8-Acyl-1-naphthoic Acids

By Keith Bowden * and Arthur M. Last, Department of Chemistry, University of Essex, Wivenhoe Park, Colchester, Essex

Abstract

The equilibrium constants for ring-chain tautomerism in a series of 8 -aroyl-1-naphthoic acids in dioxan have been determined by an i.r. spectroscopic method and have been correlated with the substituent constants σ_{t} and $\sigma_{R}{ }^{0}$ using a modified Hammett equation. The observed $\mathrm{p} K_{\mathrm{a}}$ values, which have been measured in $80 \%(\mathrm{w} / \mathrm{w}) 2$-meth-oxyethanol-water, have been corrected for these tautomeric equilibria to give the true $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{T}}$ value. The effect of substitution on the latter values have been assessed using the Hammett equation. The equ;librium constants for ring-chain tautomerism in a series of 8 -acyl-1-naphthoic acids have been determined by using the observed $\mathrm{p} K_{\mathrm{a}}$ and estimated true $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{T}}$ values in $80 \%(\mathrm{w} / \mathrm{w}) 2$-methoxyethanol-water. These equilibria constants have been correlated with steric substituent constants E_{8}. The 'cis' and 'trans' conformers of methyl 8 -aroyl-and 8 -acyl-1-naphthoates has been detected by i.r. spectroscopy and the carbonyl stretching frequencies of the ester carbonyl groups have been assigned. The results are related to the polar, resonance. and steric effects of the substituents.

It has been suggested by Lansbury ${ }^{2}$ that all 8 -aroyl- and 8 -acyl-1-naphthoic acids may exist in solution as ringchain tautomeric equilibria, in which the ring form predominates. An early study ${ }^{3}$ investigated the structure of 8-benzoyl-1-naphthoic acid and deduced that in solution the acid was very largely, if not completely, in the ring form. Examinations ${ }^{4,5}$ of the reactions of 8 -formyl- and 8 -acetyl-1-naphthoic acids (as well as for 5 -formyl-4-phenanthroic acid ${ }^{6,7}$) found their reactivity
${ }^{1}$ Part IV, K. Bowden and M. P. Henry, J.C.S. Pcrkin II, 1972, 206.
${ }^{2}$ P. T. Lansbury, unpublished studies (see p. 609, ref. 361, in V. Balasubramaniyan, Chem. Rev., 1966, 66, 567); cf. L. Christiaens and M. Renson, Bull. Soc. chim. belges, 1969, 78, 359.
${ }^{3}$ H. E. French and J. E. Kircher, J. Amer. Chesi. Soc., 1944, 66, 298.
${ }^{4}$ P. R. Jones and A. A. Lavigne, J. Org. Chem., 1960, 25, 2020.
${ }_{5}$ V. M. Rodionov and A. M. Fedorova, Izvest. Akad. Nauk, S.S.S.R., Otdel khim. Nauk., 1950, 247 (Chem. Abs., 1950, 44, 9395).
${ }^{6}$ M. S. Newman and H. S. Whitehouse, J. Amer. Chem. Soc., 1949, 71, 3664.
${ }^{7}$ G. M. Badger, J. E. Campbell, J. W. Cook, R. A. Raphael, and A. I. Scott, J. Chem. Soc., 1950, 2326.
${ }^{8}$ P. T. Lansbury and J. F. Bieron, J. Org. Chem., 1963, 28, 3564.
could be explained by the ring structure (I). Lansbury and Bieron ${ }^{8}$ have prepared the two tautomeric methyl

(1V)

(III)
esters of 8 -acetyl-1-naphthoic acid (III) and (IV) and examination of the acid itself in solution by i.r. and ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy indicates a ring-chain tautomeric equilibria in which the ring tautomer predominates.

The ring-chain equilibria for the latter acids is shown in equation (1). Both tautomeric methyl esters have been prepared for 5 -formyl-4-phenanthroic acid ${ }^{6,7}$ and the ring-chain equilibria for the acid is shown in equation (2).

The equilibrium constants K_{e} are given by equation (3)

$$
\begin{equation*}
K_{\mathrm{e}}=a_{\text {Ring }} / a_{\mathrm{Chain}} \tag{3}
\end{equation*}
$$

and the observed $\mathrm{p} K_{\mathrm{a}}$ can be related to the true $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{T}}$ by the relation (4). ${ }^{9}$ If a reliable estimate of $\mathrm{p} K_{\mathrm{a}}{ }^{\text {T }}$ can be made, K_{e} can be found by measuring the observed

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}^{\mathrm{T}}=\mathrm{p} K_{\mathrm{a}}-\log \left(K_{\mathrm{a}}+1\right) \tag{4}
\end{equation*}
$$

$\mathrm{p} K_{\mathrm{a}}$. Conversely, $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{T}}$ can be calculated more precisely if both the $\mathrm{p} K_{\mathrm{a}}$ and K_{e} can be measured directly.

In this study, measurements of the tautomeric equilibrium constants for a series of 8 -(3- or 4 -substituted benzoyl)-l-naphthoic acids have been made and are used to obtain $\mathrm{p} K_{\mathrm{a}}{ }^{\text {T }}$ from $\mathrm{p} K_{\mathrm{a}}$ values in 80% (w/w) 2-methoxy-ethanol-water. The observed $\mathrm{p} K_{\mathrm{a}}$ and estimated $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{T}}$ values are used to investigate the ring-chain tautomerism in a series of 8-acyl-1-naphthoic acids, as well as 5 -formyl4 -phenanthroic acid. The results are discussed in terms of polar, steric, and resonance effects.

EXPERIMENTAL AND RESULTS

The 8-(3- and 4 -substituted benzoyl)-1-naphthoic acids were prepared by two standard methods. The first (Method A) was the reaction of 1,8 -naphthalic anhydride with arylmagnesium bromides or iodides. ${ }^{10}$ The second (Method B) and more successful was the reaction of the anhydride with diarylcadmium. ${ }^{10,11}$ The 8 -acyl-1-naphthoic acids, with the exception of the 8 -formyl acid, were prepared similarly from 1,8 -naphthalic anhydride with alkylmagnesium halides by a modification of Jones and Lavigne's method ${ }^{4}$ (Method C). For the preparation of the 8 -pivaloyl acid, the Grignard reagent was cooled in an acetone-solid CO_{2} bath before the addition of the anhydride. Modifications of the methods of Fuson and Munn ${ }^{12}$ and of Carson and Wordie ${ }^{13}$ were used to prepare 8 -formyl-1naphthoic acid by the fusion of acenaphthenequinone in aqueous potassium hydroxide. 5-Formyl-4-phenanthroic

[^0]acid was prepared by the oxidative and basic hydrolysis of pyrene. ${ }^{14}$ 1-Naphthoic acid was available commercially, while 4 -phenanthroic acid was prepared by oxidation of 4-acetylphenanthrene. ${ }^{15}$ After repeated recrystallisation to constant m.p. and drying in a vacuum desiccator ($\mathrm{P}_{2} \mathrm{O}_{5}$), the acids had m.p.s in good agreement with literature values ${ }^{4,10-12,14,16-19}$ or, if previously unreported, satisfactory elemental analyses. The physical constants of the acids are listed in Table 1 with their recrystallisation solvent and

Table 1
Physical constants of 8 -acyl- and 8 -benzoyl-1-naphthoic and related acids

Substnt. $[\mathrm{R} \text { in }(\mathrm{I}) /(\mathrm{II})]$	M.p. $/{ }^{\circ} \mathrm{C}$	Lit. m.p. ${ }^{\circ} \mathrm{C}$	Ref.	Method (see Experimental section)
H	$167{ }^{\text {a }}$	167	12	
Me	171-172a	173-174	4	C
CD_{3}	168-169 ${ }^{\text {a }}$			C
Et	$147 \cdot{ }^{\text {a }}$	147.5-148.5	10	A
Pr ${ }^{\text {i }}$	154-156 ${ }^{\text {a }}$	158.5-159.5 ${ }^{\text {e }}$	16	C
$B u^{t}$	$160{ }^{\text {a }}$			C

Benzoyl substnt.				
H	129-130 ${ }^{\text {a }}$	128-129	10	B
4-Me	$134{ }^{\text {a }}$	$\begin{aligned} & 134-136, \\ & 135-137 \end{aligned}$	10, 17	A
3-Me	161-162 a			A
4-OMe	$197{ }^{6}$			B
$4-\mathrm{Br}$	167-168 ${ }^{\circ}$	165-167	11	A
$4-\mathrm{Cl}$	$161{ }^{\text {a }}$			A
$3-\mathrm{Cl}$	$155{ }^{\text {a }}$			A
$3-\mathrm{CF}_{3}$	182-185 ${ }^{\text {a }}$			A
1-Napthoic acid	$161{ }^{\text {b }}$	160.5-161	18	
5-Formyl-4phenanthroic acid	272-274 ${ }^{\text {d }}$	272-276	14	
4-Phenanthroic acid	$172-173{ }^{\circ}$	173.5-174.5	19	
a Firom to ethanol. ${ }^{d}$ Fr Decomposes	enc. ${ }^{b}$ Fro m aqueous rom $154^{\circ} \mathrm{C}$.	methanol dimethylforn	From mide-a	ueous acid.

the elemental analyses of previously unreported acids are given in Table 2. The neutralisation equivalents of the acids were determined by titration to be within $\pm 1 \%$ of the calculated values. The ${ }^{1} \mathrm{H}$ n.m.r. and i.r. spectra of all the acids confirmed their structure and indicated them to be pure.

The normal and pseudo methyl esters were prepared and purified as previously described. ${ }^{20-22}$ Solvents were purified as previously described. ${ }^{23-25}$
I.r. Measurements.-The carbonyl stretching vibrations of the normal and pseudo methyl esters, together with related model compounds, were determined as previously described ${ }^{25}$ for 0.02 m solutions in carbon tetrachloride. The spectra of the acids and methyl esters were measured

$$
{ }^{17} \text { F. A. Mason, J. Chem. Soc., 1924, } 2119 .
$$

18 A. Kailan, Monatsh., 1907, 28, 1069.
${ }^{19}$ K. G. Rutherford and M. S. Newman, J. Amev. Chem. Soc., 1957, 79, 213.
${ }^{20}$ K. Bowden and A. M. Last, J.C.S. Perkin II, 1973, 345.
${ }^{21}$ K. Bowden and A. M. Last, J.C.S. Perkin II, 1973, 351.
${ }^{22}$ K. Bowden and A. M. Last, J.C.S. Perkin II, 1973, 358.
${ }^{23}$ K. Bowden, M. J. Hanson, and G. R. Taylor, J. Chem. Soc. (B), 1968, 174.
${ }_{24}$ K. Bowden, M. Hardy, and D. C. Parkin, Canad. J. Chem., 1968, 46, 2929.
${ }^{25}$ K. Bowden and G. R. Taylor, J. Chem. Soc. (B), 1971, 145, 149.
as previously described ${ }^{26}$ for 0.02 m solutions in dioxan at $35(\pm 1)^{\circ} \mathrm{C}$. The spectra of all the 8 -aroyl acids showed the presence of both ring and chain tautomers; whereas, the spectra of the 8 -acyl-1-naphthoic acids, as well as 5 -formyl4 -phenanthroic acid, indicated the absence of any detectable
tautomer is sharp, while a broad absorption results from the lactone carbonyl of the ring and the carboxylic carbonyl of the chain tautomer. The latter arises from the very close frequencies of the latter absorptions. The area of the lactone carbonyl absorption was therefore calculated by

Table 2
Elemental analysis of previously unreported 8-acyl-1-naphthoic acids

		Calc. (\%)				Found (\%)			
$[\mathrm{R} \text { in }(\mathrm{I}) /(\mathrm{II})]$	formula	C	H*	\bigcirc	Other	C	H *	O	Other
CD_{3}	$\mathrm{C}_{13}{ }^{1} \mathrm{H}_{7}{ }^{2} \mathrm{H}_{3} \mathrm{O}_{3}$	71.9	$6 \cdot 0$	$22 \cdot 1$		$71 \cdot 8$	$6 \cdot 1$	$22 \cdot 3$	
$B u^{t}$	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$	$75 \cdot 0$	$6 \cdot 3$	$18 \cdot 7$		$75 \cdot 1$	$6 \cdot 3$	$18 \cdot 8$	
Benzoyl substnt.									
$3-\mathrm{Me}$	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3}$	$78 \cdot 6$	$4 \cdot 9$	$16 \cdot 5$		$78 \cdot 6$	$5 \cdot 2$	$16 \cdot 3$	
4-OMe	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4}$	$74 \cdot 4$	$4 \cdot 7$	$20 \cdot 9$		$74 \cdot 6$	4.7	$\underline{20.8}$	
$4-\mathrm{Cl}$	$\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{ClO}_{3}$	$69 \cdot 6$	$3 \cdot 6$	$15 \cdot{ }_{5}$	$11.4(\mathrm{Cl})$	$69 \cdot 6$	$3 \cdot 6$	$15 \cdot 6$	
$3-\mathrm{Cl}$	$\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{ClO}_{3}$	$69 \cdot 6$	3.6	$15 \cdot 4$	$11.4(\mathrm{Cl})$	$69 \cdot 6$	$3 \cdot 7$	$15 \cdot 4$	$11.4(\mathrm{Cl})$
$3-\mathrm{CF}_{3}$	$\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3}$	$66 \cdot 2$	$3 \cdot 2$	13.9	16.5 (F)	$66 \cdot 4$	$3 \cdot 3$		16.4 (F)

chain tautomer. Measurements of the equilibrium constants K_{e} were made by a modification of our previous

Table 3
Carbonyl stretching frequencies of methyl 8-acyl- and 8 -benzoyl-naphthoates in carbon tetrachloride

Substnt. [R in (III)/(IV)]	$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$		
	Normal ester CO		Pseudo ester CO Lactone
	Keto	Carboxylic	
H	$1704{ }^{\text {a }}$	1734a	1742
Me	1693	1722	1730
CD_{3}	1691	1722	
Et	1695	1723	1732
$\mathrm{Pr}^{\text {i }}$	1686	1725	1730
But	1681	1723	
Benzoyl substnt.			
H	1669	1739, 1726	1
4-Me	$1665{ }^{\text {- }}$	1737	
3-Me	1667	1738, 1727	
4 -OMe	$1661{ }^{-5}$	1730	
${ }_{3-\mathrm{Cl}}^{3-\mathrm{Cl}}$	1669	1739, 1721	$1737(\pm 1)$
$3-\mathrm{Cl}$	1672	1739, 1722	
$4-\mathrm{Br}$	1670	1739, 1722	
${ }^{3-\mathrm{CF}_{3}}$ Methy I-naphthoate	$1674{ }_{5}$	1739, 1721	J
Methyl 1-naphthoate Methyl 5 -formyl-		$1725{ }^{\text {b }}$	
Methyl 5 -formyl-4-phenanthroate	1693	1725	1718
Methyl 4-phenanthroate		1722	

${ }^{a}$ Lit. ${ }^{27}$ values are 1701 (formyl) and $1737 \mathrm{~cm}^{-1}$ (carboxylic).
${ }^{b}$ Lit. ${ }^{27}$ valuc is $1724 \mathrm{~cm}^{-1}$.

Table 4

Equilibrium constants, K_{e}, for the ring-chain tautomerism in 8 -(3- and 4 -substituted benzoyl)-1-naphthoic acids in dioxan

Substnt.	$K_{e} *$	Substnt.	$K_{\mathrm{e}}{ }^{*}$
H	$1 \cdot 41(\pm 0 \cdot 02)$	$4-\mathrm{Cl}$	$1 \cdot 66(\pm 0.06)$
$4-\mathrm{Me}$	$0.43(\pm 0 \cdot 01)$	$3-\mathrm{Cl}$	$2 \cdot 63(\pm 0.02)$
$3-\mathrm{Me}$	$0.84(\pm 0 \cdot 02)$	$4-\mathrm{Br}$	$1 \cdot 60(\pm 0 \cdot 12)$
$4-\mathrm{OMe}$	$0 \cdot 14(\pm 0 \cdot 03)$	$3-\mathrm{CF}_{3}$	$3 \cdot 06(\pm 0 \cdot 14)$

* The reproducibility of the K_{e} values are shown in parentheses.
method. ${ }^{26}$ The i.r. spectra of the 8 -(substituted benzoyl)-1naphthoic acids showed only two distinct carbonyl absorptions. The absorption due to the keto carbonyl of the chain
assuming that the ratio of the area of the keto carbonyl to that of the carboxylic carbonyl is the same in both the normal ester and chain tautomer of acid. The latter calculated area was then deducted from the total area observed. K_{e} Was then calculated as before. ${ }^{26}$ The values of $v_{\max }$. of the carbonyl stretching vibrations of the methyl esters in carbon tetrachloride are shown in Table 3, while the values in dioxan were $2-4 \mathrm{~cm}^{-1}$ smaller. The values of K_{e} in dioxan are given in Table 4. A Perkin-Elmer model 231 spectrophotometer and a Dupont model 301 curve resolver were used in these studies. The wavenumber measurements were reproducible to $\pm 1 \mathrm{~cm}^{-1}$ (relative to the standard, a calibration by superimposed water vapour bands). ${ }^{27}$
${ }^{1} \mathrm{H}$ N.m.r. Measurements.-The spectra of the compounds studied were measured using a Varian A60-A spectrometer operating at 60 MHz , as in our previous study. ${ }^{28}$ The chemical shifts were measured in p.p.m. relative to tetramethylsilane (TMS), and are quoted as \because values. The structure of the acids and methyl esters were confirmed and these compounds were shown to be $>98 \%$ pure by this spectral method.

Table 5
${ }^{1} \mathrm{H}$ N.m.r. spectral results for the methyl esters of the 8 -acyl-1-naphthoic acids in carbon tetrachloride

$\begin{aligned} & \text { Substnt. } \\ & {[\mathrm{R} \text { in }} \\ & (\mathrm{III}) /(\mathrm{IV})] \end{aligned}$	-			
	Pseudo		Normal	
	Methoxy	R in (III)	Methoxy	R in (IV)
H	$6 \cdot 35$	$3 \cdot 68$	$6 \cdot 13$	-0.21
Me	6.80	$8 \cdot 13$	$6 \cdot 17$	$7 \cdot 38$
Et	6.80	7-90, 9•18	$6 \cdot 15$	$6.95,8.77$
$\mathrm{Pr}^{\text {i }}$	6.84	7•70, 9•12	$6 \cdot 20$	6.74, 8.75
$\mathrm{Bu}^{\text {t }}$			$6 \cdot 17$	8.55
Ph	6.72		6.68	
5-Formyl-4-phenanthroic acid	$6 \cdot 22$	$3 \cdot 87$	6.23	-0.33

Lansbury and Bieron ${ }^{8}$ have shown that this method can be used to distinguish between the normal and pseudo
${ }^{26}$ K. Bowden and M. P. Henry, J.C.S. Perkin II, 1972, 201.
${ }_{27}$ K. Bowden, M. J. Price, and G. R. Taylor, J. Chem. Soc. (B), 1970, 1022.
${ }^{28}$ K. Bowden and G. R. Taylor, J. Chem. Soc. (B), 1971, 1390.
methyl esters of 8-acetyl-1-naphthoic acid and this has been confirmed for several other esters in the present study, as shown in Table 5. The methoxy methyl chemical shifts for the normal methyl esters of the 8 -acetyl, -propionyl, -isobutyryl, and -pivaloyl-1-naphthoic acids occur in the range $\div 6 \cdot 15--6 \cdot 20$ and for the corresponding pseudo methyl esters in the range $\div 6.80-6.84$. However, the methoxy methyl chemical shifts for the two methyl esters of 8 -formyl-1naphthoic and 5 -formyl-4-phenanthroic acids are very close, whereas the chemical shifts of the formyl and acetal hydrogens are distinctly separated. Furthermore the methoxy methyl chemical shifts of the normal and pseudo methyl esters of the 8 -benzoyl-1-naphthoic acids are very close, but the tautomers can be distinguished in mixtures. The asymmetry of the ring carbon in the pseudo methyl 8 -isopropyl-1-naphthoate causes the non-equivalence of the two isopropyl methyl groups, as previously observed in related systems. ${ }^{29}$

The spectra of the 8 -acyl-1-naphthoic acids, as well as i-formyl-4-phenanthroic acid, correspond closely to those of the relevant pseudo methyl esters (less the methoxy

Table 6

Ionisation of 8 -acyl- and 8 -benzoyl-1-naphthoic and related acids in 80% (w/w) 2-methoxyethanol-water at $25{ }^{\circ} \mathrm{C}$ *

Substnt. (R in (I) (IL)]	$\begin{aligned} & \text { Observed } \\ & \mathrm{p} K_{\mathrm{a}} \end{aligned}$		Estimated $\mathrm{p} K_{\mathrm{a}}{ }^{\mathbf{T}}$
H	$9 \cdot 11_{5}$		$6.05(\pm .0 .05)$
Me	$8 \cdot 31$		$6 \cdot 2_{0}(\pm 0 \cdot 1)$
CD_{3}	$8 \cdot 30_{5}$		$6 \cdot 2_{0}(\pm 0 \cdot 1)$
Et	$8 \cdot 52$,		$6 \cdot 2_{0}(\pm 0 \cdot 1)$
Pr ${ }^{\text {i }}$	$8 \cdot 8{ }^{5}$		$6 \cdot 2_{0}(\pm 0 \cdot 1)$
But	9.73		6.6(土 $0 \cdot 1$)
Benzoyl substnt.		$\log \left(1+h_{\mathrm{e}}\right)$	Calculated $\mathrm{p} K_{\mathrm{a}}{ }^{\text {T }}$
H	7.00	$0.38(\pm 0.01)$	$6.62(\pm 0.04)$
4 Me	$7 \cdot 00_{5}$	$0.155_{5}(\pm 0.01)$	$6.85(\pm 0.04)$
3-Me	7.065	$0 \cdot \underline{2} 6_{5}(\pm 0.01)$	$6.80(\pm 0.04)$
4-OMc	$6 \cdot 84$	$0.055_{5}(\pm 0.015)$	$6.788_{5}(-0.045)$
$4-\mathrm{Cl}$	$6 \cdot 90{ }_{5}$	$0.422_{5}(\pm 0.01)$	$6.48(\pm 0.04)$
$3 \cdot \mathrm{Cl}$	$7.07{ }_{5}$	$0.56(\pm 0.01)$	$6.515(\pm 0.04)$
${ }_{4}^{4-\mathrm{Br}}$	6.905	$0.415(\pm 0.02)$	$6.49(\pm 0.05)$
3-CF3	7.05	$0.61\left(\pm 0.01{ }_{5}\right)$	$6.44\left(\pm 0.04{ }_{j}\right)$
1-Naphthoic acid	$6 \cdot 45{ }_{5} \dagger$		
5-Formyl-4-	8.51		

5 -Formyl-4phenanthroic acid
4 -Phenanthroic $\quad 5.83$ acid
8-Methoxy-1- $\quad 6.38$ naphthoic acid

* The observed $\mathrm{p} K_{a}$ values were reproducible to $\pm 0 \cdot 03$ The uncertainties shown for the other values are those derived either from the reproducibility (K_{e} and calculated $\mathrm{p} K_{\mathrm{a}}{ }^{T}$) or the estimation (estimated $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{T}}$). The values of the calculated $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{T}}$ are made using relation (4) and estimated $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{T}}$ are described in the text. \dagger Lit. ${ }^{30,31}$ values are 6.45 , $6 \cdot 40$.
methyl), again indicating no detectable chain tautomer in the acids. No significant differences in spectra would be expected for the ring-chain tautomers of the 8 -benzoyl acids and the spectra observed confirmed this.

[^1]$\mathrm{p} K_{\mathrm{a}}$ Measurements.-The $\mathrm{p} K_{\mathrm{a}}$ values of the acids in 80% (w/w) 2-methoxyethanol-water at $25(\pm 0 \cdot 1){ }^{\circ} \mathrm{C}$ were measured as described previously ${ }^{25}$ and are shown in Table 6.

All our measurements are the results of at least two separate determinations.

DISCUSSION

Ring-Chain Tautomerism in 8-Aroyl-1-maphthoic Acids. -The equilibrium constants K_{e} for the series of 8-(3- and 4-substituted benzoyl)-1-naphthoic acids in dioxan have been determined by an i.r. spectroscopic method as shown in Table 4. As observed previously for related systems, ${ }^{26,32,33} K_{\mathrm{e}}$ increases as the ring substituent becomes more electron withdrawing and vice tersa. However, the relation between $\log K_{\mathbf{e}}$ and the substituent σ values is distinctly curved, as has been also noted by Bowden and Henry ${ }^{26}$ for both the substituted cis-3-benzoyl-3-methylacrylic and 2 -benzoylbenzoic acids. A modified Hammett equation (5) can be used to correlate the equilibrium constants, where σ_{I} and $\sigma_{R}{ }^{0}$ are the

$$
\begin{equation*}
\log \left(K / K_{0}\right)=\rho_{I} \sigma_{I}+\rho_{R_{i}} \sigma_{R}^{0} \tag{5}
\end{equation*}
$$

'inductive' and resonance substituent constants, ${ }^{34,35}$ respectively. The present series comprises both metaand para-substituents. These can only be combined in a single correlation series by assigning a differential resonance contribution for the two positions. The original separation ${ }^{34}$ of σ values into 'inductive ' and resonance effects used $\frac{1}{3} \sigma_{R}{ }^{0}$ and $\sigma_{R}{ }^{0}$ for the meta- and para-position, respectively. This has been followed in the correlation series 1 , Table 7. Series 2, Table 7, only contains the

Table 7

Reaction constants for the ring-chain tautomeric equilibria of 8 -(substituted benzoyl)-1-naphthoic acids in dioxan using the modified Hammett equation *

Series *	PI	F_{R}	$\log i^{-0}{ }_{\text {e }}$	s	;	n
1	$1 \cdot 286$	$2 \cdot 918$	$0 \cdot 058$	0.073	$0 \cdot 970$	8
	(5.98)	(8.06)				
2	$\begin{gathered} 1.782 \\ (23.47) \end{gathered}$	$\begin{gathered} 3 \cdot 713 \\ (30 \cdot 19) \end{gathered}$	$0 \cdot 122$	$0 \cdot 023$	11.999	5

* s Is the standard deviation, r the correlation coefficient, and n the number of substituents studied. The quantity in parentheses is the student's t test for the significance of tho regression variable. \dagger Series l comprises all substituents, while series 2 only para-substituents.
para-substituted acids. While both correlations result in similar relations and conclusions, the series containing only para-substituents is more successful. This very probably results from the absence of the arbitrary assignment of the extent of the resonance contribution from the meta-position. The substituent effect is found to be mainly derived from the resonance contribution and, according to Bowden and Henry, ${ }^{26}$ arises from the stabilisation of the chain tautomer by interactions such as
${ }^{33}$ M. V. Bhatt and K. M. Kamath, J. Chem. Soc. (B), 1968, 1036.
${ }^{34}$ R. W. Taft and I. C. Lewis, J. Amer. Chem. Sne., 1958, 80, 2436.
${ }^{35}$ R. W. Taft and I. C. Lewis, J. Amer. Chem. Soc., 1959, 81, $\check{5343 \text {; R. W. Taft, S. Ehrenson, I. C. Lewis, and R. E. Glick, }}$ ibid., p. 5352.
(VII). The reaction constants found for the 8-benzoyl-1naphthoic acids are of the same sign but are very much greater than those previously found ${ }^{26}$ for the cis-3-benzoyl-2-methylacrylic acid system. However the

(Vロ)
8 -benzoyl group will exist in a plane perpendicular to that of the naphthalene nucleus and be fully conjugated internally, whereas the cis-3-benzoyl group will suffer partial internal deconjugation arising from steric interactions with the total acrylic system. Thus the greater ρ_{n} value observed for the 8 -benzoyl system arises from the full conjugation possible within this system.

Ionisation of 8-Aroyl-1-naphthoic Acids.-The observed $\mathrm{p} K_{\mathrm{a}}$ values of these acids in 80% (w/w) 2-methoxyethanolwater at $25^{\circ} \mathrm{C}$ are affected by the existence of the ringchain tautomeric equilibria. Equation (4) relates the true $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{T}}$ to the observed value. ${ }^{9}$ However the values of K_{e} are for solution in dioxan. Previous studies ${ }^{26,28,33}$ indicate that these tautomeric equilibria are relatively insensitive to changes in comparatively polar media. The true $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{T}}$ values have been calculated as shown in Table 6. Despite the larger uncertainties and relatively small range of values in these $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{T}}$ values, the Hammett correlations, shown in Table 8 , are fairly successful and

Table 8
Reaction constants using Taft or Hammett equation *

```
Reaction in \(80 \%\) ( \(w / w\) )
    2-methoxyethanol-
                water
\(\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{T}}\) Values of 8 -
    (substituted benzoyl)-
    1-naphthoic acids at
    \(25^{\circ} \mathrm{C} \dagger\)
\(\begin{array}{lllllll}\text { Ring-chain tautomerism } & -0.60(\delta) & 2.24 & 0.12 & 0.977 & 4\end{array}\)
    in 8-acyl-1-naphthoic
    acids
\(\begin{array}{lllllll}\nu_{\max } \text { for keto carbonyl } & 13.5(a) & 1667.5 & 2.2 & 0.928 & 8\end{array}\)
    stretching frequencies
    of methyl 8 -(sub-
    stituted benzoyl)-1-
    naphthoates in carbon
    tetrachloride
        * See Table 7. \(\dagger\) Correlations (a) are those using \(\sigma^{36}\) and
    (b) those using \(\sigma^{0} .{ }^{37}\)
```

the reaction constant ρ is ca. $0 \cdot 7$. The reaction constant ratio, ρ / ρ_{0}, for the 8 -(substituted benzoyl) system compared with that of substituted benzoic acids under the same conditions ($p=1 \cdot 69$), ${ }^{25}$ is ca. $0 \cdot 4$. Transmission of the substituent polar effects from 8 -benzoyl group through the bonds by an inductive mechanism, using transmission factors found previously, ${ }^{38}$ would give a very small value for p / p_{0} of $c a \cdot 0 \cdot 1-0 \cdot 2$. A model for the field effect path for transmission is more difficult.

[^2]However, the phenylacetic acid system can be considered to be a reasonable stereochemical analogy regarding both the reaction site-substituent dispositions and the cavity. The reaction constant ratio for the latter system is $0 \cdot 46(\pm 0 \cdot 07) .^{38}$ The agreement of the latter value with that found in this study further confirms the reality of the field effect transmissive model for substituent polar effects.

Ionisation of 8-Acyl-1-naphthoic Acids.-The observed $\mathrm{p} K_{\mathrm{a}}$ values of these acids in 80% (w/w) 2-methoxy-ethanol-water at $25^{\circ} \mathrm{C}$ are also affected by ring-chain tautomeric equilibria as shown in equation (4). Estimates of the true $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{T}}$ values for these acids have been made (Table 6) from previous studies of 8 -substituted acids, ${ }^{30,39}$ as well as from the present investigation. The values of K_{e} obtained for these 8 -acyl acids are shown in Table 9. In these acids resonance effects for the 8-acyl

Table 9
Equilibrium constants K_{e} for the ring-chain tautomerism in 8-acyl-1-naphthoic acids in 80% (w/w) 2-methoxy-ethanol-water at $25^{\circ} \mathrm{C}$

Substnt. $[\mathrm{R} \text { in }(\mathrm{I}) /(\mathrm{II})$	$i_{\text {e }}$	Substnt. [R in (I)/(II)]	$K_{\text {e }}$
H	$1200(\pm 100)$	Et	$210(\pm 140)$
Me	$130(\pm 50)$	$\mathrm{Pr}^{\text {i }}$	$420(\pm 80)$
CD_{3}	$130(\pm 80)$	$B \mathbf{u}^{\text {t }}$	$1300(\pm 500)$

groups are unimportant as all these groups are completely or very extensively deconjugated with the naphthalene nucleus. The equilibrium constants for the 8 -acetyl, -propionyl, -isobutyryl, and -pivaloyl acids can be correlated by the Taft steric linear free energy relation

$$
\begin{equation*}
\log \left(K_{\mathrm{e}} / K_{\mathrm{e}}^{0}\right)=\delta E_{\mathrm{s}} \tag{6}
\end{equation*}
$$

(6) with the steric substituent constants, $E_{s},{ }^{40}$ as shown in Table 8. Both the 8 -formyl and -benzoyl acids are excluded as the importance of polar and resonance effects in the tautomeric equilibria of these two acids clearly separates them from the latter series. The correlation, while not highly successful, still clearly indicates the destabilising effect of steric 'bulk' in the substituent R in (I) and (II) for the chain tautomer, This appears to arise from the severe crowding between the 1,8 -substituents in the chain tautomer which is partially relieved on formation of the relatively stable six-membered peri-ring tautomer. ${ }^{41}$

The same order of substituent effects was observed by Bowden and Taylor ${ }^{28}$ for tautomerism in 2 -acylbenzoic acids. In both systems the benzoyl group favours the chain tautomer, relative to the other acyl groups, due to the loss of the important resonance interactions in the chain tautomer when forming the ring tautomer. The formyl groups favour the ring form more than any other acyl substituent. This cannot arise from steric effects as the steric 'bulk' of the substituent on the formyl

[^3]group is much less than that of the acetyl group. However the hydrogen substituent is strongly electron-withdrawing compared with the other alkyl groups, ${ }^{40}$ and this would appear to stabilise the chain tautomer. ${ }^{26}$
The equilibrium constant for ring-chain tautomerism for $\tilde{5}$-formyl-4-phenanthroic acid is difficult to estimate. I very approximate estimate of the true $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{T}}$ would be i.0. This results in an estimate of 3000 for K_{e} of this acid.
It is now possible to make some general conclusions regarding ring-chain tautomerism in acylcarboxylic acids from this and previous studies. ${ }^{1,26,28}$ The order of inclination to form the chain tautomer is, for the acyl substituent, $\mathrm{Ph}>\mathrm{Me}>\mathrm{CH}_{2} \mathrm{Me}>\mathrm{CHMe}_{2}>\mathrm{CMe}_{3}>\mathrm{H}$, and, for the link system, 1,2-benzene $>$ cis-ethylene $>$ 1,8 -naphthalene $>4,5$-phenanthrene. These orders result from a combination of polar, resonance, and steric (both ' bulk' and ring-size) factors.
Carbonyl Stretching Frequencies of the Methyl Esters.The carbonyl stretching frequencies of the normal esters in carbon tetrachloride are shown in Table 3. The methyl 8-(substituted benzoyl)-1-naphthoates show one absorption band corresponding to the keto carbonyl group, and in most cases, two corresponding to the ester carbonyl group. The carbonyl stretching frequencies

(VII)

(IX)
of the keto-carbonyl group vary with the substituent in the 8 -benzoyl group and can be correlated using the modified Hammett equation (7) and the substituent
\[

$$
\begin{equation*}
v=a \sigma+v_{0} \tag{7}
\end{equation*}
$$

\]

parameters σ^{36} The regression analysis is shown in Table 8 and the constant a is $13 \cdot 5$. This corresponds closely to similar correlations of $\nu_{\text {max }}$ in carbon tetrachloride; e.g. $a=14.9$ (methyl 2 -benzoylbenzoates). ${ }^{25}$

The stretching frequencies of the ester carbonyl group do not vary with the substituent in a similar manner. Two absorptions at $1738-1739$ and $1721-1727 \mathrm{~cm}^{-1}$ are observed for all substituents except p-methyl and -methoxy. These could correspond to the two possible conformers (VIII) 'trans ', and (IX) ' cis', arising from the two possible geometric arrangements of the deconjugated acyl and the methoxycarbonyl groups. The existence of two conformers would depend on the steric and polar interactions between the acyl and methoxycarbonyl groups. As the methoxy-group is more ' bulky' than the carbonyl oxygen, the conformer having least steric interaction will be that having the least 'bulky' acyl substituent and the methoxy-group on the same side of the plane of the naphthalene ring. The existence of the two conformers for the 8 -benzoyl esters appears possible as the benzoyl group is completely or uery extensively deconjugated with the naphthalene
ring. This results in the 'lateral-bulk' requirements for the phenyl group being comparable with those of the oxygen atom. The four 8 -acyl groups having alkyl substituents are all similarly deconjugated, but have relatively ' bulky ' substituents. Consequently the 'trans. conformers (VIII) will be strongly favoured by steric factors for these four esters and their ester carbonyl frequencies are in the range $1722-1725 \mathrm{~cm}^{1}$. Conversely for the 8 -formyl ester, the ' bulk' of the hydrogen is very small and the more stable conformer would be the ' cis' (IX). The latter ester has an ester carbonyl frequency of $1734 \mathrm{~cm}^{-1}$. This suggests that for the 8 -benzoyl esters, the high frequency absorption refers to the ' $c i$ ' ' conformer (IX) and the low frequency absorption to the 'trans' conformer. The carbonyl frequency may be considered to be determined by the relative contributions of canonical structures (X)-(XIII). ${ }^{42}$ In

(X)

(XI)

(X m)
the ' cis ' conformer (IX) the contributions from canonical structures (XI)-(XIII) will be greatly reduced by unfavourable dipolar interactions with the parallel carbonyl group and this will result in a higher $\nu_{\text {max }}$ compared to the 'trans' conformer in which no such interaction can occur. Canonical structures such as (XI)-(XIII) would be favoured by electron-releasing groups such as p-methoxy and -methyl and this apparently results in the failure to observe the 'trans' conformer in the latter cases. When two conformers are present, two absorptions would be expected for both the keto and ester carbonyl absorptions. However, the two absorptions are not observed for the keto carbonyl. This probably results from the keto carbonyl absorptions being broad. The frequency differences are comparatively small and are likely to give unresolved absorption bands. The conformers observed are summarised in Table 10.

Table 10
Conformers of methyl 8-aroyl and -acyl-1-naphthoates in carbon tetrachloride

The variations in the carbonyl stretching frequencies of methyl pseudo-8-formyl-1-naphthoate ($1742 \mathrm{~cm}^{-1}$),

42 E. J. Hartwell, P. E. Richards, and H. W. Thompson, J. Chem. Soc., 1948, 1436.
pseudo-5-formyl-4-phenanthroate (1718 cm^{-1}), and pseudo-2-formylbenzoate ($\left.1785 \mathrm{~cm}^{-1}\right)^{43}$ in carbon tetrachloride clearly arise from the ring size of the pseudo ester, i.e. six-, seven-, and five-membered, respectively.
The carbonyl stretching frequencies are strongly affected by the $\mathrm{X}-\mathrm{C}-\mathrm{Y}$ angle of a compound $\mathrm{X}-\mathrm{CO}-\mathrm{Y},{ }^{44}$ which
${ }^{43} \mathrm{~K}$. Bowden, unpublished studies.
${ }^{44}$ J. O. Halford, J. Chem. Phys., 1956, 24, 830.
depends on the ring size in cyclic compounds, ${ }^{45}$ and increase with decreasing ring size.

One of us (A. M. L.) thanks the S.R.C. for a research studentship.
[2/2781 Received, 11th December, 1972]
${ }^{45}$ R. N. Jones and C. Sandorfy, in ' Chemical Applications of Spectroscopy,' ed. W. West, Interscience, New York, 1956, ch. IV.

[^0]: ${ }^{9}$ C. Pascual, D. Wegman, U. Graf, R. Scheffold, P. F. Sommer, and W. Simon, Helv. Chim. Acta, 1964, 47, 213.
 ${ }^{10}$ D. V. Nightingale, W. S. Wagner, and R. H. Wise, J. Amer. Chem. Soc., 1953, '75, 4701.
 ${ }^{11}$ D. P. Weeks and G. W. Zuorick, J. Amer. Chem. Soc., 1969, 91, 477.
 ${ }_{12}$ R. C. Fuson and G. Munn, J. Amer. Chem. Soc., 1949, 71, 1870.
 ${ }^{13}$ I. Cason and J. D. Wordie, J. Org. Chem., 1950, 15, 608.
 14 R. E. Dessy and M. S. Newman, Org. Synth., 1958, 38, 32.
 ${ }^{15}$ L. F. Fieser, M. Fieser, and E. B. Hershberg, J. Amer. Chem. Soc., 1936, 58, 2322.

 16 M. Freund and K. Fleischer, Annalen, 1913, 399, 182.

[^1]: ${ }^{29}$ K. Bowden and G. R. Taylor, J. Chem. Soc. (B), 1971, 1395.
 ${ }^{30}$ K. Bowden and D. C. Parkin, Canad. J. Chem., 1969, 47, 185.
 ${ }^{31} \mathrm{~W}$. Simon et al., ' Zusammen stellung von scheinbaren Dissoziationkonstanten in Losungsmittelsystem MethylcellosolveWasser,' Juris-Verlag, Zurich, 1959, vol. 1.
 ${ }^{32}$ R. E. Lutz and H. Moncure, J. Org. Chem., 1961, 26, 746.

[^2]: ${ }^{36}$ D. H. McDaniel and H. C. Brown, J. Org. Chem., 1958, 23, 420.
 ${ }^{37}$ R. W. Taft, J. Phys. Cheri., 1960, 64, 1805.
 ${ }^{38}$ I. Bowden, Canad. J. Chem., 1963, 41, 2781.

[^3]: ${ }^{39}$ M. Hojo, K. Katsurakawa, and Z. Yoshida, Tetrahedron Letters, 1968, 1497.
 ${ }_{40}$ R. W. Taft, in 'Steric Effects in Organic Chemistry,' M. S. Newman, Wiley, New York, 1956, ch. 13.
 ${ }^{41}$ Cf. V. Balasubramaniyan, Chem. Rev., 1966, 66, 567.

